Event Generators

HEP-CCE All-hands Update

J. Taylor Childers (Argonne)
Stefan Hoche (Fermilab)

Summary

e Event Generators in the LHC provide a unique opportunity to
leverage HPCs.

- They are experiment independent and compute intense.

e Primary NLO generators for the LHC are MadGraph and
Sherpa.

e Primary LO generator for the LHC is largely Pythia8
e Challenges include:

- Generator development has historically not been
supported by the DOE, leading to most generator teams
being based outside the US. This is changing.

- Not easy for a software engineer to pick up and just re-
factor for performance. Highly desktop-CPU optimized
algorithms resulted in obscure algorithmic choices.

* But we progress.

2 Argonne Leadership Computing Facility

QEATLAS

EXPERIMENT
htip:/, .ch

Run: 204153
Event: 35369265
2012-05-30 20:31:28 CES

Two Groups, Two Approaches

End / h.\.‘
. . : ’ il W, /
* MadGraph5: CERN: Stefan Roiser, Andrea Valassi, Laurence Field, % = ¢« s ™[
Olivier Mattelaer, ANL: Walter Hopkins, Tyler Burch, Taylor Childers, “
Smita Darmora

- MG auto-generates compilable code based on what the user wants.

- Generated a few of these processes, converted them to CUDA and
Kokkos

- MG devs working to reverse engineer the conversions back into the
auto-generation code.

e Sherpa: FNAL: Stefan H6che, Steve Mrenna, Josh Isaacson, LUND: Stefan
Prestel, UCinn: Holger Schulz

- Taking a more ground up approach

- Re-engineering algorithms for parallelization at many scales

3 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

—— Expected Scaling: 0(n*)

Ground Up Improvements

100 &=
F—— Actual Scaling: ©(n*?3)

e Sherpa team working on re-engineering high-multiplicity
algorithms that tend to lead compute intensive LHC calcs

=

o
L
I

e This work focuses on making a key calculation GPU friendly.

=

o
b
I

Time per Event (ms)

e The Berends-Giele algorithm for color-ordered amplitudes (no

=

o
b
I

color factors included yet) is shown here at varying gluons.
® GPU used: Telsa P100 16 GB ——

Josh Isaacson (FNAL) §

e Each thread calculates one event (not many threads per event) Number of Gluons

=> 1024 events at a time

e Currently, memory limits the maximum number of events to
be stored on the GPU at a given time.

4 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Ground Up Improvements

e Additional work to re-engineering the event generation
workflow to be more scalable.

e Published in 2019 was some initial work on LO boson
production at scale.

e This work revisited the event generation workflow

(integration, generate, unweight,) to scale up on current HPC
systems.

e Used Comix (part of Sherpa) and Pythia.

e This work continues with NLO calculations.

5 Argonne Leadership Computing Facility

Normalized wall time

10 2}

1071

Strong: time \

Weak: time x (MC err)? T

e
Cray Aries, 5.625 - 45 TB/s _ _\.\
Xeon E5-2698v3, 2x16 cores) ’ \
T .

128 GB DDR4 2133 MHz

~—

—&— strong
—=— weak

Z+6jets, LHC@14TeV
pr, > 20GeV, || <6

Sherpa MC @ NERSC

LO, grid warmup only

X X ORET ORI oagat R X

0 ™ =) N 0 | Vo= - = =

] 2 =8 8 N8 ®E E] =

D ™ o N — — — A0 oo (=] He} o

1 2 4 8 16 32 64 128 256
Nodes

https:/ /arxiv.org/pdf/1905.05120.pdf

AAAAAAAAAAAAAAAAAA

MadGraph GPU Porting Effort

e The MadGraph team has focused on how to convert their
framework to auto-generate CUDA algorithms.

e These have largely, though not entirely, been based on line-by-
line conversion and not re-engineering algorithms for GPUs.

e The GitHub repo contains autogenerated code for a few

processes, which have been converted to CUDA and now
Kokkos.

e These examples are being used by the MG developers
(Olivier) to convert the code-generation to output CUDA (not
yet Kokkos).

e Currently this is all based on a simple Rambo phase-space
generation

e We don’t have any detailed results just yet, besides code.

6 Argonne Leadership Computing Facility

https:/ / github.com /madgraph5/madgraph4gpu

#include <cmath>

#include <thrust/complex.h>

using namespace std;

namespace MG5_sm

{

__device__ void oxxxxx(const double p[3],

thrust::complex<double> fo[6]);

__device__ void sxxxxx(const double p[3],

__device__ void ixxxxx(const double p[3],

thrust::complex<double> fi[6]);

__device__ void txxxxx(const double p[3],

thrust::complex<double> fi[18]);

__device__ void vxxxxx(const double p[3],

thrust::complex<double> v[6]);

double fmass, int nhel, int nsf,

int nss, thrust::complex<double> sc[3]

double fmass, int nhel, int nsf,

double tmass, int nhel, int nst,

double vmass, int nhel, int nsv,

AAAAAAAAAAAAAAAAAA

Machine Learning for EvGen

, unweighting efficiency LO QCD NLO QCD (RS)
—os Optimum Cos (w),’m,,,..x n =0 n =1 n=2 n=3 n=4 n =0 n=1
- | | | ® W* +njets Sherpa | 2.8-10~' 3810~ 7.5-10° 1.5-10~° 83-10~* | 9.5-10~2 4.5-10~°
- . B - T ° B o NN4NF [6.1-107" 1.2.107" 1.0-107% 1.8.10° 89-107* | 1.6-10"' 4.1-10*
Gain 2.2 3.3 1.4 1.2 1.1 1.6 0.91
-3.0 -08g ¢ n -0.8 g W~ 4 mnjets Sherpa |29-107' 4.0-10% 7.7-10* 20107 97-107*|1.0-107' 45-107°
. g 83 * g NN+4NF | 7.0-107" 15-107' 1.1-107% 22-107° 7.9-107* | 1.5-107" 42.107°
3 o x -09 & £ . -0.9 3 Gain 2.4 3.3 14 1.1 082 | 15 0.91
& - . g 2: § Z+mnjets Sherpa |3.1-107" 36-.107* 1.5-107% 4.7.107% 1.2.107" 53.107°
= . -10g g4 . = -0 g NN+NF | 38-10' 1.0-107' 1.4-10? 24.10°° 1.8:-10°% 57.107%
-1.0 e - B s E] Gain 1.2 2.9 0.91 0.51 15 11
° =11 -1.1=
32 | TABLE II: Unweighting efficiencies at the LHC at /s = 14 TeV using the NNPDF 3.0 NNLO PDF set and a correspondingly
—4 ~ -1 ° lo 1 defined .:'l.m:lg (’nuplil}g. Jets are identified \fsing '| he kr clustering ;‘l]gnril!un with R = 0.4, pr; > 20 GeV and |n;| < 6. In the
. o] case of Z/v" production, we also apply the invariant mass cut 66 < my < 116GeV
i Optimum L (] ¢ --1.3 30 ° o -1.3
>0 "Z‘lr 3.2 {‘~l 3.6 1.0 1.2 1.4 1.6 1.8 '.lii)
10910Nepochs 0910Npins
FIG. 2: Projections of the sampled parameters and color coded acceptances. The plot on the left suggest a high learning rate, https / / aerV-Org / pdf / 200110028pdf
coupled with a large number of epochs to be beneficial. The plot on the right suggests a strong preference for a small number
of bins. The best performing configuration is indicated with a star.

e Sherpa group has also investigated using Neural Networks to guide phase space integration, as a VEGAS replacement.
e NNs can be GPU friendly and thus moving from VEGAS to NNs could improve the usefulness of HPCs for EvGen.

e “The new integrator based on Neural Networks and Normalizing Flows gives a much larger unweighting efficiency
than Sherpa in processes with few jets, both at LO and at NLO precision. In processes with more final-state jets it
performs similarly to the existing integration techniques in Sherpa. [...] We expect that in the high multiplicity cases
the Neural Network + Normalizing Flow technique will also outperform Sherpa, if it can be trained over sufficiently
many epochs with sufficiently many sample points.”

7 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Summary

* EvGen and HEP software communities are working to make
these tools utilize accelerators and scale up on HPCs.

e Given their independence from experimental software
frameworks and concentration of computation, they are easier
targets for optimization.

e Moving these frameworks forward requires a lot of expert
involvement due to the complex algorithms that have been
developed.

e MadGraph team working on establishing some metrics of
success, including physics validation. Hope to have some
results and comparisons between CPU, CUDA, Kokkos in
coming months.

e Work on building new accelerator friendly EvGen algorithms
and workflows should be providing new results soon.
Publications to follow.

8 Argonne Leadership Computing Facility

4
4
-~
Argonn: &

% |ENERGY

@ 0

QUK Ripce

OLT= U m I'W]N =i
0~ e

AMDI1

AAAAAAAAAAAAAAAAAA

